Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38500360

RESUMO

Acromegaly and gigantism are disorders caused by hypersecretion of growth hormone (GH), usually from pituitary adenomas. Although somatostatin analogues (SSA), dopamine agonists, and GH receptor antagonists are important therapeutic agents, all of these have issues with their effectiveness, safety, and/or convenience of use. To overcome these, we developed a GH-specific potent neutralizing a mouse monoclonal antibody (mAb) named 13H02. 13H02 selectively bound both to human and monkey GH with high affinity, and strongly inhibited the biological activity of GH in the Nb2 rat lymphoma cell proliferation assay. In hypophysectomized/GH-supplemented rats, a single subcutaneous administration of 13H02 significantly and dose-dependently lowered the serum insulin-like growth factor-1 levels. To pursue the therapeutic potential of this antibody for acromegaly and gigantism, we humanized 13H02 to reduce its immunogenicity and applied a single amino acid mutation in the Fc region to extend its serum half-life. The resulting antibody, Hu-13H02m, also showed GH-specific neutralizing activity, similar to the parental 13H02, and showed improved binding affinity to human FcRn.


Assuntos
Acromegalia , Gigantismo , Hormônio do Crescimento Humano , Camundongos , Humanos , Feminino , Animais , Ratos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Acromegalia/tratamento farmacológico , Gigantismo/complicações , Gigantismo/tratamento farmacológico , 60515 , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
2.
Front Immunol ; 14: 1149874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122706

RESUMO

Biologics have become an important component of treatment strategies for a variety of diseases, but the immunogenicity of large immune complexes (ICs) and aggregates of biologics may increase risk of adverse events is a concern for biologics and it remains unclear whether large ICs consisting of intrinsic antigen and therapeutic antibodies are actually involved in acute local inflammation such as injection site reaction (ISR). Ozoralizumab is a trivalent, bispecific NANOBODY® compound that differs structurally from IgGs. Treatment with ozoralizumab has been shown to provide beneficial effects in the treatment of rheumatoid arthritis (RA) comparable to those obtained with other TNFα inhibitors. Very few ISRs (2%) have been reported after ozoralizumab administration, and the drug has been shown to have acceptable safety and tolerability. In this study, in order to elucidate the mechanism underlying the reduced incidence of ISRs associated with ozoralizumab administration, we investigated the stoichiometry of two TNFα inhibitors (ozoralizumab and adalimumab, an anti-TNFα IgG) ICs and the induction by these drugs of Fcγ receptor (FcγR)-mediated immune responses on neutrophils. Ozoralizumab-TNFα ICs are smaller than adalimumab-TNFα ICs and lack an Fc portion, thus mitigating FcγR-mediated immune responses on neutrophils. We also developed a model of anti-TNFα antibody-TNFα IC-induced subcutaneous inflammation and found that ozoralizumab-TNFα ICs do not induce any significant inflammation at injection sites. The results of our studies suggest that ozoralizumab is a promising candidate for the treatment of RA that entails a lower risk of the IC-mediated immune cell activation that leads to unwanted immune responses.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Humanos , Complexo Antígeno-Anticorpo , Adalimumab/uso terapêutico , Receptores de IgG , Artrite Reumatoide/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Inflamação/tratamento farmacológico , Produtos Biológicos/uso terapêutico
3.
J Ethnopharmacol ; 259: 112963, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439405

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Goshajinkigan (GJG), a traditional Japanese Kampo formula, has been shown to exhibit several pharmacological actions, including antinociceptive effects. Processed aconite root (PA), which is considered to be an active ingredient of GJG, has also been demonstrated to have an ameliorative effect on pain, such as diabetic peripheral neuropathic pain. We recently identified neoline as the active ingredient of both GJG and PA that is responsible for its effects against oxaliplatin-induced neuropathic pain in mice. AIM OF THE STUDY: In the present study, we investigated whether GJG, PA, and neoline could inhibit Nav1.7 voltage-gated sodium channel (VGSC) current and whether neoline could ameliorate mechanical hyperalgesia in diabetic mice. MATERIALS AND METHODS: To assess the electrophysiological properties of GJG extract formulation, powdered PA, and neoline on Nav1.7 VGSCs, whole-cell patch clamp recording was performed using human HEK293 cells expressing Nav1.7 VGSCs. In addition, the ameliorative effects of neoline on diabetic peripheral neuropathic pain were evaluated using the von Frey test in streptozotocin (STZ)-induced diabetic model mice. RESULTS: GJG extract formulation significantly inhibited Nav1.7 VGSC peak current. Powdered PA also inhibited Nav1.7 VGSC peak current. Like GJG and PA, neoline could inhibit Nav1.7 VGSC current. When diabetic mice were treated with neoline by intraperitoneal acute administration, the mechanical threshold was increased in diabetic mice, but not in non-diabetic mice, in a behavioral study. CONCLUSION: These results suggest that neoline might be a novel active ingredient of GJG and PA that is one of responsible ingredients for ameliorating mechanical hyperalgesia in diabetes via the inhibition of Nav1.7 VGSC current at least.


Assuntos
Aconitina/análogos & derivados , Aconitum , Analgésicos/farmacologia , Neuropatias Diabéticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Hiperalgesia/prevenção & controle , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Raízes de Plantas , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Aconitina/isolamento & purificação , Aconitina/farmacologia , Aconitum/química , Analgésicos/isolamento & purificação , Animais , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Células HEK293 , Humanos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Endogâmicos ICR , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Limiar da Dor/efeitos dos fármacos , Raízes de Plantas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
4.
Glia ; 67(1): 27-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430652

RESUMO

Astrocytes play a key role in the maintenance of synaptic transmission by producing L-lactate via the astrocyte-neuron lactate shuttle (ANLS). Astrocyte activation in the spinal cord is involved in the expression of neuropathic pain. We investigated the role of the ANLS in the spinal cord on hyperalgesia in neuropathic pain in mice. Specific activation of dorsal horn astrocytes induced mechanical hyperalgesia, which was attenuated by α-cyano-4-hydroxycinnamate (4-CIN), an inhibitor of monocarboxylate transporters that deliver L-lactate from astrocytes to neurons. Intrathecal L-lactate administration lowered the mechanical nociceptive threshold, which was attenuated by pretreatment with 4-CIN and isosafrole (a lactate dehydrogenase inhibitor), but not gliotoxin. Intrathecal L-lactate administration significantly upregulated c-Fos and cofilin phosphorylation, which was reversed by 4-CIN. The lowered mechanical nociceptive threshold was significantly attenuated by intrathecal fluorocitrate (an astrocyte-specific Krebs cycle inhibitor), 4-CIN, and isosafrole treatment. Thus, these results suggested that, in neuropathic pain, mechanical hyperalgesia was maintained by excessive L-lactate supplied by activated astrocytes via an aberrant ANLS.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Medula Espinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Injeções Espinhais , Ácido Láctico/administração & dosagem , Ácido Láctico/toxicidade , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
5.
Front Pharmacol ; 9: 1400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555329

RESUMO

Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine formula, is used as a remedy for conditions, and physical weakness. Cancer cachexia is seen in advanced cancer patients and is defined by an ongoing loss of skeletal-muscle mass that leads to progressive functional impairment. In the present study, we examined the hypothesis whether NYT improves the functional loss of skeletal muscle cancer cachexia. Male C57/BL 6J mice with B16BF6 melanoma tumor showed decreased expression of myosin heavy chain (MHC) in the gastrocnemius muscle. Moreover, the expression of SOCS3 and phosphorylated STAT3 and AMPK was increased, and the expression of phosphorylated 4E-BP1 was decreased in the gastrocnemius muscle of tumor-bearing mice. These data suggested that amino acid metabolism was altered in tumor-bearing mice, which were normalized by the NYT intervention. The present study showed that NYT might be a novel therapeutic option for the treatment of sarcopenia occurring cancer cachexia.

6.
Neuroscience ; 333: 204-13, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27457035

RESUMO

Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation.


Assuntos
Analgésicos/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Sinvastatina/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Gliose/metabolismo , Gliose/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vértebras Lombares , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Substrato Quinase C Rico em Alanina Miristoilada , Neuralgia/patologia , Inibidores de Proteínas Quinases/farmacologia , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...